
How to calculate Colon Ideals in GCD Domains in
particula in UFD Domains

Theorem:
Let  be a GCD domain,  and . Moreover let  and  for
some index sets . Then the following relation holds:

proof: We can take  instead  as . This enables us to eliminate maybe a
few of 's and take only  that generates . As, 

 which is sometimes useful to reduce computation.
Coming back to proof, take
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Corollary:

To find the equality in (1) we have to check is there any element outside . To

find element outside this ideal we can look at non-zero element in . For a non-zero

element , it is sufficient to check wheter  as corresponding

nonzero elements in  will be  for all . But if  so is .

Now if we have such  then we have another ideal  and repeat

the above process. Else, we get the equality.

Example:

Let ,  and .
By equation (1) we have,

Now, find non-zero element in . Any non zero element of  is of the form  and
taking pre-image under th natural isomorphism ( )

So, .
And hence check whether ?

 as elements in  must have atleast 1 degree in indeterminate . Hence  and
hence
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